X-ray Reflection Grating Update

Craig Forest, Ralf Heilmann, Andrew Lapsa, Olivier Mongrard, Johanna Przybylowski, Mark L. Schattenburg, Matthew Spenko, Yanxia Sun, Jenny You

Space Nanotechnology Laboratory MIT Center for Space Research

Constellation X-Ray Mission Facility Science Team Meeting November 15-6, 2001

Outline

- Review of Wolter telescope reflection grating optics
- Grating design
- Flat substrate research
 - Thermal shaping
 - Block lapping
 - Magnetorheological finishing
- Assembly of flat substrates
 - Design overview
 - Flexure bearings
 - Micrometer array

Wolter Telescope Reflection Grating Optics

X-ray Reflection Grating Geometry

Flat Substrates

- Why
 - Image distortion
- Requirements
 - Silicon, Glass
 - $-200-400 \mu m \text{ thick}$
 - $-0.5-1.0 \mu m$ flatness
 - Avg. Surface Roughness R_a < 1 nm
- Techniques
 - Thermal Shaping, Block Lapping, MRF

Properties of Grating Substrates

Silicon Wafers

Glass Microsheets

Thermal slumping of glass sheets

Heat the glass sheet to conform to flat surface

- Annealing temperature
- Optical flat plate

Results

- Flatness of 8 μm
- Bumps with 1-5 μm height

Thermal Slumping

Flat substrate with dust

a) Before slumping.

b) After slumping to flat plate.

Flat substrate with pin chucks

a) Before slumping.

b) After slumping to flat pin chuck.

Thermal Slumping

Artificial 'dust': Pin Chuck

Microetched fused silica/silicon to get regular pin pattern

•TiO₂ coating to roughen the contact surface

Thermal Slumping

Slumping to pin chuck result

Future Work

Larger sheets

Taller pins

New roughening method

1 μm Flatness

Block Lapping

- Concept
 - Bond Si wafer or glass microsheet to thick flat
 - D = 100 mm, t = 450 μm, flatness = 4 μm

Adhesive — Flat glass plate

Not to scale

- Polish wafer to 0.5 µm flatness
- Release wafer

Block Lapping

UV-cure Epoxy

UV-cure Epoxy

Results

- Minimal distortion
 (0.5 μm)
- Measurement tool limit reached
- Unable to dissolve epoxy, release wafer

Before

After

Thermoplastic Adhesive

- Process
 - Wafer placed on molten adhesive
 - Slow cool with no thermal gradient

- Results
 - Distortion comparable to epoxy experiment
 - Simple release procedure

Wafer polishing process with MRF

Wafer polishing results with MRF

Bow & Warp

Before - 6.55 μm **After** - 0.81 μm

rms microroughness

Before – 0.66 nm **After** – 0.64 nm

Material: Silicon

Diameter: 100 mm

Thickness: 0.45 mm

MIT 2nd Gen. Assembly Truss

- Functional Requirements
 - Align gratings ¹ to within 1 μm of ideal
 - Repeatable use
 - Gratings fixed into place
 - Lightweight flight module (\$\$\$)
 - Permit X-ray entrance/exit
 - Endure launch (mechanical, acoustic vibrations)
 - Endure space (thermal cycling)

Strategy

Foils loosely aligned in flight module

Align foils using microcombs and reference surface

Glue foils into "coarse" combs in flight module

Concept

Assembly Process

- Put flight module in
- Put lid on
- Align reference combs
- Position gratings with spring combs
- Glue

Comb Alignment-Flexure Bearings

Simple

No friction

Sensitive

Long life

- Integrated force sensor
 - Ref. flat contact
 - Study comb damage

Microcomb Alignment

Micrometer Array

- ~1 mm actuation
- 0.1 µm resolution
 - Repeatable

